
How (not) to lose communication with your submersible on Europa: An experimental study for characterizing the shear performance of tethers under confinement in ice

V. Singh^{1,2}, C. McCarthy², K. L. Craft³, C. R. German⁴, M. V. Jakuba⁴, R. D. Lorenz³, G. W. Patterson³, A. R. Rhoden⁵, and M. E. Walker⁶

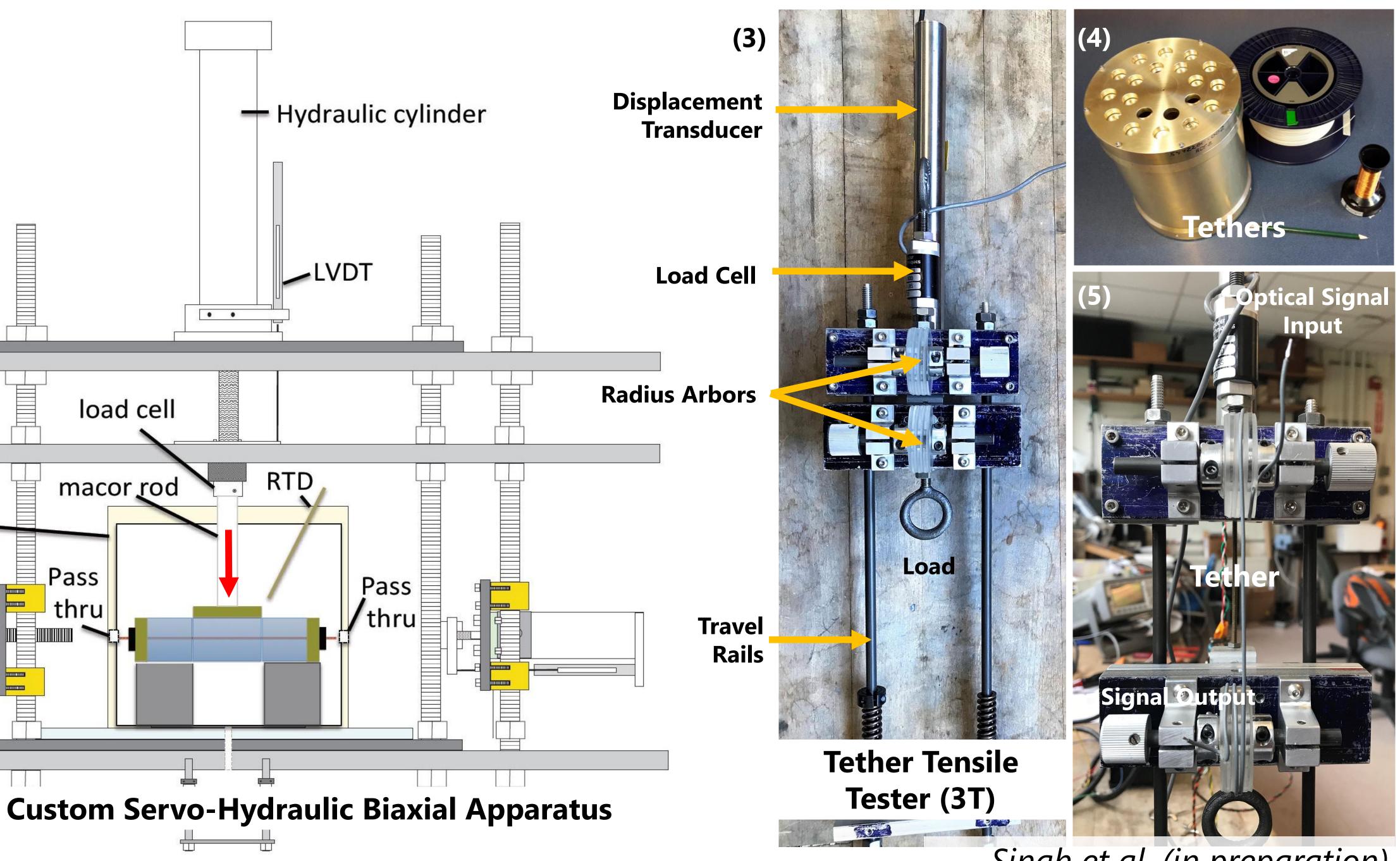
¹School of Earth and Space Exploration, Arizona State University (Tempe, AZ, Vishaal.Singh@asu.edu), ²Lamont-Doherty Earth Observatory, Columbia University (Palisades, NY), ³Johns Hopkins University Applied Physics Laboratory (Laurel, MD), ⁴Woods Hole Oceanographic Institution (Woods Hole, MA), ⁵Southwest Research Institute (Boulder, CO), ⁶University of Southern Maine (Portland, ME)

NASA

Sieving shaved

Pressing

Flooding


Figure 1: Polycrystalline ice blocks of controlled grain size, porosity & impurity content are fabricated using a modified "standard ice" protocol [Cole, 1979] (1-6). Tethers currently employed for polar submersible exploration are embedded in the ice & retained in tension (7-9)

(2) load cell macor rod LN-cooled cryost Pass **Descending Probe**

Singh et al. (in preparation) Figure 2: (1) Future exploration of ocean world interiors can utilize micro-tether systems. Europa's observed thermo-mechanical properties are replicated to investigate (4) various tethers in ice with a (2) custom biaxial cryogenic deformation rig and (3,5) Tether Tensile Tester (T3) apparatus

Sawing for Microscopy Microtome Ice Blocks

LDEO Experiment/Lab Manager: T. Koczynski²

Create Ice Block Assembly

Insert Tether

Micro-tethers offer unparalleled data transfer rates (for minimal size, mass & power) and sufficient length, but can they survive under Europa's expected thermo-mechanical conditions?

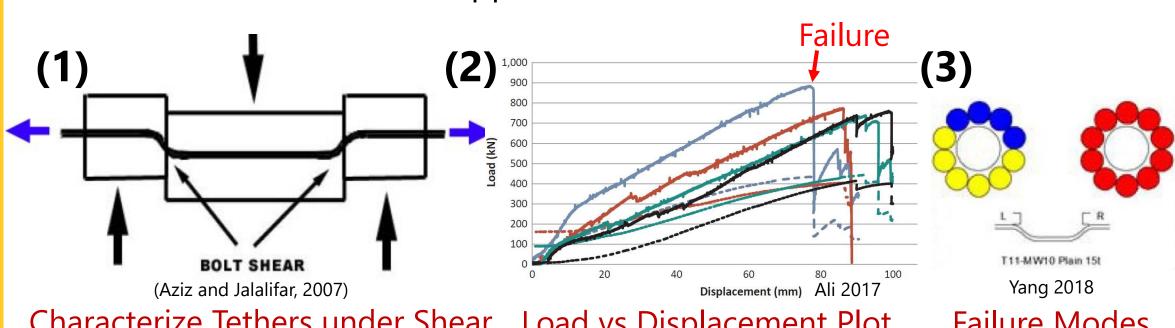



Figure 3: (1-3) Micro-tethers need to survive 10s of km in Europa's interior, while maintaining pathway for robust communication with surface lander

OBJECTIVE

METHODS & TESTS

Characterize Tethers under Shear Load vs Displacement Plot **Failure Modes Figure 4:** Expected deliverables for laboratory component of Europa STI

RESULTS

2. Map out vidble stress regimes for communication								
Tether	Diameter (mm)	Max. Tensile Load (N)	Max. Shear Load (N)	Shear Displacement at Max. Shear	Mass (kg/20km)	Working Strength (kN)	Optical Working Strength	Bending Radius (mm)
Linden STFOC	0.965	220	?	?	18	?	?	38
Linden HSFOC	1.9	1100	?	?	72	133 (FOMC)	?	?
Bare Fiber	0.25	~10	?	?	1.282	8	?	?
XBT Cu Ribbon	0.113 x 2	< 10	?	?	4	?	?	?

 Table 1: Europa STI will establish optical & shear properties of tethers

FUTURE TESTS: Freeze-In & Long Duration Cold Tests | Heating | Tether Fatigue (normal stress) w/o Ice | Shear on Tethers w/o Ice

Europa Signals Through The Ice (STI)

Characterize viability of employing tethers with a laboratory setup simulating Europa's shearing & fault conditions

Measure strength, communication performance & deployment 2. Calibrate optical working strength & ultimate tensile strength 3. Identify failure modes using microscopic characterization

Testing includes shearing across 2 icy "faults" between 3 forcing ice blocks for various tethers at (Europa-based) parameters of: Shear Stress | Velocity | Temperature | Ice Composition

2. Testing ices at 100-250K with tethers for velocities 10⁻⁷-10⁻³ m/s, using biaxial cryogenic deformation apparatus:

 Normal stress (100 kPa) maintained & vertical piston driven (constant shear rate) until optical and/or mechanical failure Identify effects of pre-tension using load cells

3. Characterize communication performance (T3 & Biaxial):

 Optical Backscatter Reflectometer for fibers (power loss & strain) Milliohm meter for copper tether (resistance for conductors)

Establish properties for tethers in Europa-like ice/environment Map out viable stress regimes for communication

Europa STI will enable development of tethered communication techniques to operate in the harsh conditions of Ocean World Interiors

This research was carried out at LDEO, Columbia University, under a contract with National Aeronautics and Space Administration (NASA)